Single-Cell Analysis of Growth in Budding Yeast and Bacteria Reveals a Common Size Regulation Strategy
نویسندگان
چکیده
To maintain a constant cell size, dividing cells have to coordinate cell-cycle events with cell growth. This coordination has long been supposed to rely on the existence of size thresholds determining cell-cycle progression [1]. In budding yeast, size is controlled at the G1/S transition [2]. In agreement with this hypothesis, the size at birth influences the time spent in G1: smaller cells have a longer G1 period [3]. Nevertheless, even though cells born smaller have a longer G1, the compensation is imperfect and they still bud at smaller cell sizes. In bacteria, several recent studies have shown that the incremental model of size control, in which size is controlled by addition of a constant volume (in contrast to a size threshold), is able to quantitatively explain the experimental data on four different bacterial species [4-7]. Here, we report on experimental results for the budding yeast Saccharomyces cerevisiae, finding, surprisingly, that cell size control in this organism is very well described by the incremental model, suggesting a common strategy for cell size control with bacteria. Additionally, we argue that for S. cerevisiae the "volume increment" is not added from birth to division, but rather between two budding events.
منابع مشابه
Checking cell size in yeast.
To remain viable, cells have to coordinate cell growth with cell division. In yeast, this occurs at two control points: the boundaries between G1 and S phases, also known as Start, and between G2 and M phases. Theoretically, coordination can be achieved by independent regulation of growth and division, or by participation of surveillance mechanisms in which cell size feeds back into cell-cycle ...
متن کاملDual-Color Monitoring Overcomes the Limitations of Single Bioluminescent Reporters in Fast-Growing Microbes and Reveals Phase-Dependent Protein Productivity during the Metabolic Rhythms of Saccharomyces cerevisiae.
Luciferase is a useful, noninvasive reporter of gene regulation that can be continuously monitored over long periods of time; however, its use is problematic in fast-growing microbes like bacteria and yeast because rapidly changing cell numbers and metabolic states also influence bioluminescence, thereby confounding the reporter's signal. Here we show that these problems can be overcome in the ...
متن کاملRegulation of cell size in the yeast Saccharomyces cerevisiae.
For cells of the yeast Saccharomyces cerevisiae, the size at initiation of budding is proportional to growth rate for rates from 0.33 to 0.23 h-1. At growth rates lower than 0.23 h-1, cells displayed a minimum cell size at bud initiation independent of growth rate. Regardless of growth rate, cells displayed an increase in volume each time budding was initiated. When abnormally small cells, prod...
متن کاملIn Vitro Binding Potentials of Bentonite, Yeast Cell Wall and Lactic Acid Bacteria for Aflatoxin B1 and Ochratoxin A
Background: This study intended to assess individual and combined adsorption potentials of three adsorbents (processed bentonite as an inorganic adsorbent, and cell walls of Saccharomyces cerevisiae and of the GG strain of Lactobacillus rhamnosus as organic adsorbents) for aflatoxin B1 and ochratoxin A under in vitro conditions. Methods: This study was conducted in Ferdowsi University of Mashh...
متن کاملPump-free multi-well-based microfluidic system for high-throughput analysis of size-control relative genes in budding yeast.
Time-lapse single cell imaging by microscopy can provide precise cell information such as the cell size, the cell cycle duration, protein localization and protein expression level. Usually, a microfluidic system is needed for these measurements in order to provide a constant culture environment and confine the cells so that they grow in a monolayer. However, complex connections are required bet...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Current Biology
دوره 26 شماره
صفحات -
تاریخ انتشار 2016